Sources and Structure
June 22, 2025
Thoughts? 😎 💭
unvotes)unvotes)read_csv() function from readr packagereadr package is part of the tidyverse<- is the assignment operator
# is the comment operator
library() and name of library
library(readr)install.packages("readr")Use glimpse() to see the columns and data types:
# load libraries
library(readr)
library(dplyr)
dem_summary <- read_csv("data/dem_summary.csv")
glimpse(dem_summary)Rows: 6
Columns: 5
$ region <chr> "The West", "Latin America", "Eastern Europe", "Asia", "Afri…
$ polyarchy <dbl> 0.8709230, 0.6371358, 0.5387451, 0.4076602, 0.3934166, 0.245…
$ gdp_pc <dbl> 37.913054, 9.610284, 12.176554, 9.746391, 4.410484, 21.134319
$ flfp <dbl> 52.99082, 48.12645, 50.45894, 50.32171, 56.69530, 26.57872
$ women_rep <dbl> 28.12921, 21.32548, 17.99728, 14.45225, 17.44296, 10.21568
Or use View() or click on the name of the object in your Environment tab to see the data in a spreadsheet:
05:00
Now try writing the same data to a file with a different name
02:00
read_excel() to read in the data05:00
googlesheets4gs4_deauth() to authenticateread_sheet() to read in the data05:00
glimpse() and View()05:00